
2004P0022

Accelerated Insertion of Materials – Composites
(AIM-C)

Software Component Delivery Requirements

Report No. 2004P0022

V_2.0.0
May 07, 2004

Boeing Originator – Original Issue
Gail L. Hahn

gail.l.hahn@boeing.com
Boeing Phantom Works
St. Louis, MO 63166

Primary Author: Dr. George Orient
Boeing Rocketdyne
Canoga Park, CA

Copyright 2004 by The Boeing Company. Published by DARPA with permission.

The original issue of this document was jointly accomplished by Boeing and the U.S. Government under the guidance of NAVAIR
under N00421-01-3-0098, Accelerated Insertion of Materials – Composites.

Approved for Public Release, Distribution Unlimited

Approved for Public Release, Distribution Unlimited - 1 - V_2.0.0, May 7, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Software Component Delivery Requirements

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Boeing Phantom Works St. Louis, MO 63166

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2004P0022

Table of Contents
Foreword . 3
1. Scope of Requirements . 4
2. Version Tag . 6
3. Centralizing Environmental Settings . 7
4. Module Delivery Process . 9

4.1. Delivery Director Structure . 10
4.1.1. Directory build . 10
4.1.2. Directory data . 11
4.1.3. Directory docs . 11

4.1.3.1 Directory docs/api . 12
4.1.3.2 Directory docs/CCB . 12
4.1.3.3 Directory docs/implementation . 12
4.1.3.4 Directory docs/theory . 14
4.1.3.5 Directory docs/user . 16

4.1.4. Directory env . 16
4.1.5. Directory Excel . 16
4.1.6. Directory exe . 18
4.1.7. Directory lib . 19
4.1.8. Directory QA . 19

4.1.8.1. Directory QA\OS\platform\case_name\input 19
4.1.8.2. Directory QA\OS\platform\case_name\output 19
4.1.8.3. Directory QA\os\platform\case_name\work 19

4.1.9. Directory src . 19
4.1.10. Directory Validation . 20

5. Template Delivery Process . 21
5.1 Creating RDCS Batch File . 21
5.2 Configuration Control of Tools in Functional Models 23
5.3 Quality Assurance – Verification of the Math Model Outside of RDCS 23
5.4 Directory Structure . 24

5.4.1 Directory docs . 25
5.4.2 Directory QA-Math_Model . 25
5.4.3 Directory QA-Design_Process . 25
5.4.4 Directory rdcs . 25

6 The Configuration Control Process . 25
6.1 CVS – Concurrent Versioning System Overview . 25
6.2 Tagging the Repository . 26

7 The Change Control Process . 27
7.1 The Change Request . 28
7.2 The Software Release Process (SRP) . 28

References . 30

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 2

2004P0022

Foreword

The benefits of integrated product definition teams to balance requirements from multiple
sources have been known for years. Each functional expert has knowledge, analysis, and test
techniques that are not readily accessible or understood by others. Trade studies and design
optimizations are traditionally run function by function with a summation of benefits and
shortcomings when all the players come to the table for the final review. What would happen if
the functions could be optimized simultaneously? What would happen if the materials focal
could see the impact of a change on a structural analysis? What would happen if the structural
analyst could trade design considerations with manufacturing defect probabilities? What would
happen if the uncertainties associated with analytical techniques and test methods were dissected,
understood, and tracked?

DARPA devised the Accelerated Insertion of Materials initiative to answer these questions by
challenging Materials, Manufacturing, Structures, Math and Computing personnel to integrate
the best of the tools and methodologies of their trades. A Boeing led team and the U.S.
Government jointly accomplished “Accelerated Insertion of Materials – Composites” Phase 1
under the guidance of NAVAIR as part of the DARPA sponsored Accelerated Insertion of
Materials (AIM) initiative. Dr. Leo Christodoulou, the DARPA Program Manager, and Dr. Ray
Meilunas, the NAVAIR technical agent, led the effort. The AIM-C technical team was led by
Gail Hahn, Dr. Karl M. Nelson, and Charles Saff of Boeing.

The Accelerated Insertion of Materials – Composites (AIM-C) program established a
methodology to evaluate historical roadblocks to effective implementation of composites
materials and developed a process to eliminate these roadblocks via knowledge, analysis, and
test to mature the material/process/design knowledge base for successful qualification and
certification. The approach and analytical tools foster integrated technology/product
development teams. Uncertainty is addressed through identification and management of error
and application of statistical and probabilistic approaches to facilitate an application solution that
is robust (insensitive to known variations).

This document provides software component delivery requirements for anyone interested in
conformance to the AIM-C software system as well as the documentation required for a software
component to be considered for integration into the system.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 3

2004P0022

1. Scope of Requirements
The AIM-C methodology is implemented in the AIM-C system at two levels of integration. The
system software is created by the integration team, whereas physics based models, computational
design tools and textual knowledge elements are generated by domain experts.

In this context AIM-C modules are defined as an assemblage of mathematical expressions
describing relationships between input and output values compiled into a single code. The input
of a module is a set of files that are invariant with respect to the design instance (parametric
CAD models, compiled mathematical solutions methods, etc.), and a set of variables defining the
state of an instance of the module. A template consists of a network of Modules called the Math
Model illustrated in Figure 1, and instances of design processes whose goal is to exercise the
Math Model to extract specific high level information, such as characterization of the variability
for a set of system responses or definition of an optimum solution that satisfies design
constraints. The Math Model defines how the individual Modules are interconnected and what
type of information flows from one Module to another.

Figure 1 Math Model example

The concepts of Modules, Math Model, and design processes are independent of the integration
platform. AIM-C employs RDCS, the Robust Design Computational System to implement the
specific design templates. RDCS has facilities to characterize variables, their bounds and
distributions, and to define and document the Math Model and to define and document the
Design Processes. The RDCS integration platform is documented in Reference [1].

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 4

2004P0022

Business Logic Engine
- Parsers
- Workflow Modeling
- Inference engine
- Etc.

Web browser interface

Models in XML
- Readiness matrix
- Rules
- Interaction/Interview paths
- Etc.

Models in XML
- Readiness matrix
- Rules
- Interaction/Interview paths
- Etc.

Help/Advisor EngineHelp/Advisor Engine

Project Database
- Current requirements
- Pointers to knowledge data

Project Database
- Current requirements
- Pointers to knowledge data

Textual Knowledge
- Procedures
- Manuals

Data Knowledge
- Properties
- Allowables
- Curves, tables, etc.

Computational Knowledge
- Validated Models (FEM)
- Design templates (RDCS)
- Manuals

Textual Knowledge
- Procedures
- Manuals

Data Knowledge
- Properties
- Allowables
- Curves, tables, etc.

Computational Knowledge
- Validated Models (FEM)
- Design templates (RDCS)
- Manuals

Presentation templates in HTML
Presentation Engine
-GUI generation
-Reports, plots

Presentation Engine
-GUI generation
-Reports, plots

Components contributed by domain experts

Figure 2 Scope of the current requirements document
Figure 2 illustrates the scope of the current document. While all levels of the AIM-C system
encapsulate material insertion knowledge, certain types of knowledge, such as maturity in the
form of readiness levels require documenting the result of conformance assessment and
committal in a form recognized by the system. Other methodologies and knowledge, such as
modules, templates, and documents are created by the experts and submitted to the Configuration
Control Board for approval and integration into the system. As illustrated in Figure 3, the AIM-C
computational software catalog housing these contributions is partitioned into three areas:
Utilities, Modules and Templates. The difference between a Utility and Module is that utilities
typically perform generic tasks not related to a physical discipline.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 5

2004P0022

Domain
Experts/

Model
Developers

CATALOG

Physics-
Based

Models

Material
Insertion

Team

CATALOG

Materials &
Processes

Math Models

Product
Design
Team

Resin 1
Resin 2

Fiber 1
Fiber 2

Prepreg
Lamina 1

etc

etc

etc
Laminate 1

Math Model 1

Math Model 2

Math Model n
(Legacy)

Cure Cycle
Bagging
etc

CATALOG

Generic Utilities

rdcs2file

etc

Figure 3 AIM-C Computational tools catalog

The current document describes requirements for the computational tools components.

Requirement - Modules, templates and documents need to be delivered in a manner that
requires no modification other than exposing template control parameters to the system by the
integration team.
This requirement assures that no inadvertent change is made to these knowledge elements, and it
also paves the way toward automated knowledge submission in the future.

Throughout its development, each contributed component goes through configuration control
administered by the Configuration Control Board (CCB).

2 Version Tag
The purpose of the version tag is to uniquely identify a configuration, which may be a physics-
based module, a template, or a document. In conjunction with proper practices of version control
described in more detail in Sections 6 and 7, this assures that a known configuration can always
be retrieved from the repository. For the sake of requirement definition, the exact steps in
configuration control are less important than the fact that each work article must have an
associated version tag. The version tag has the following format:

V_Major.Minor.Fix

For software the following criteria are applied to define elements of the version tag:
Major: Fundamentally new physics, or improved methodology
Minor: No fundamental change in capability. Input and/or documentation may change.
Numerical results may be affected

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 6

2004P0022

Fix: Layout change, improved user interface, but no change in the number or the type of
inputs, or their numerical values or other information content.

Recognizing that configuration control is not done manually through file naming conventions
and reliance on date stamps, it is not required that file names are tagged with the version. In fact,
it is preferable to carry a generic file name so that automated tools do not have to be modified
when a new release of a component such as data or a script become available.

Requirement - Version tag must be included in documents in the title and on every page in the
rightmost edge of the page footer section.

Requirement - If files are tagged with the version tag, a properly formed version tag must be
used (V_Major.Minor.Fix).

Requirement – There may be no references to date in the file names. The version tag in the
repository has a date associated with it, and re-stating the date is extraneous and a source of
error.

Recommendation – To simplify tool scripts, avoid adding the version tag to file names for files
that are used by tools (input files, tool configuration files, source code, etc). Only tag Word,
PowerPoint and PDF file names. Remember, the ultimate authority on version lies with the
versioning system.

3 Centralizing Environment Settings
In order to assure easy porting of the AIM-C system between different environments, all
configuration settings must be centralized. In other words, no references to users’ home
directories, paths to tools or other environment settings should be used in any of the scripts or
tools in AIM-C. This is similar to facilities in all current operating systems where the system
environment is stored centrally, and all applications have access to a common set of environment
variables. An example of the C shell version of the environment settings is shown in Listing 1.
set OS = `uname`

setenv OS_VERSION `uname -r`

if ($OS == "SunOS") then

 setenv JAVA_HOME /apps/java/Java1.4.1_01

 setenv ANSYS_HOME /usr/local/bin

 setenv ANSYS_EXE ansys60

 setenv COMPILER wsv

 setenv COMPILER_VERSION 6_2

 setenv F77 /apps/$COMPILER$COMPILER_VERSION/bin/f77

 setenv F90 /apps/$COMPILER$COMPILER_VERSION/bin/f90

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 7

2004P0022

 setenv CC /apps/$COMPILER$COMPILER_VERSION/bin/CC

 setenv INSTALL_env /usr/sbin/install

 setenv GNUPLOT /home/jslee/bin/sun5.8/gnuplot_v3.7.1

 if ($?xSize == 0) set xSize = 500

 if ($?ySize == 0) set ySize = 500

 setenv GNUPLOT_TERMINAL 'gif medium size '$xSize', '$ySize' xDDDDDD x000000
x404040 xff0000 xffa500 x66cdaa xcdb5cd xadd8e6 x0000ff xdda0dd x9500d3'

else if ($OS == "Linux") then

 setenv JAVA_HOME /usr/java/j2sdk1.4.2_02

 setenv ANSYS_HOME /usr/local/bin

 setenv ANSYS_EXE ansys60

 setenv COMPILER pgi

 setenv COMPILER_VERSION rh73

 setenv PLATFORM $OS'--'$OS_VERSION/$COMPILER'--'$COMPILER_VERSION

 setenv F90 /apps/$COMPILER$COMPILER_VERSION/linux86/bin/pgf90

 setenv F77 /apps/$COMPILER$COMPILER_VERSION/linux86/bin/f77

 setenv F90 /apps/$COMPILER$COMPILER_VERSION/linux86/bin/f90

 setenv CC /apps/$COMPILER$COMPILER_VERSION/linux86/bin/CC

 setenv INSTALL_env /usr/bin/install

 setenv GNUPLOT /usr/bin/gnuplot

 setenv GNUPLOT_TERMINAL 'png medium'

else

 echo "Unsupported OS: "$OS

 exit 1

endif

setenv PLATFORM $OS'--'$OS_VERSION/$COMPILER'--'$COMPILER_VERSION

setenv JAXP_HOME /home/georient/jaxp-1.1

setenv XALAN_HOME /home/georient/xalan-j_2_2_D11

setenv JEP_HOME /home/georient/jep-2.23

setenv WebEE_HOME /apps/WebEE/V_1.1.0

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 8

2004P0022

setenv RDCS_HOME /home/adebchau/RDCS

setenv RDCS_REV 2.0

setenv RDCS_BIN bin_pioneer

setenv RDCS_PLATFORM linux2.4_gnu

setenv LOCAL_SCRATCH /local/scratch

setenv CLASSPATH $JAVA_HOME/lib/tools.jar

setenv CLASSPATH $CLASSPATH':'$JAXP_HOME/jaxp.jar

setenv CLASSPATH $CLASSPATH':'$XALAN_HOME/bin/xalan.jar

setenv CLASSPATH $CLASSPATH':'$JEP_HOME/jep-2.23.jar

setenv CLASSPATH $CLASSPATH':'$WebEE_HOME/WEB-INF/lib/WebEE.jar

setenv CLASSPATH $CLASSPATH':'$AIM_HOME/AIM-ComputationalLink/codes/java

Listing 1. Centralized Control of the Environment.
If a new tool requires environment settings that are not currently in the AIM-C environment
definition, then the new settings need to be added to the central environment set. Individual tools
can access the central environment set by executing $AIM_HOME/bin/setEnv.csh or
%AIM_HOME%\bin\setEnv.bat, for Unix and Windows environments, respectively.

Requirement – All environment definition must be done through the central environment
script.

Requirement – All tools invoked by contributed tools must be identified by full parametric
path.
Requirements basically state that there may be no explicit references to any resource with full
non-parametric absolute path (including references to the developer’s home directory or any
system resource such as /tmp). Use the environment parameters defined in setEnv to
construct a parametric path that uniquely defines the required resource.
Tools cannot rely on any environment such as an alias that is not defined in setEnv. For
example, it is not acceptable to refer to the Ansys application as ansys81, since that alias may
not be valid at the hosting site. Use something like $ANSYS_HOME/bin/ansys81 instead,
where the ANSYS_HOME environment variable is defined in setEnv.csh.

4 Module Delivery Process
Modules typically encapsulate knowledge related to a single discipline. They must contain their
documentation, and they may be implemented using a combination of languages (scripting,
compiled), engineering tools such as CAD and FEM platforms. In order to minimize the number
of scripting languages and promote platform neutrality, AIM-C prefers Java and compiled
languages such as Fortran 90 and C++ for module implementation. Small wrapping scripts may
be necessary, and the preferred scripting language is Python. Unix-specific shell scripting (c-
shell, korn-shell) or text processing languages such as awk and grep are allowed, but their use is
only justified if they perform a function that cannot be done with Java or Python.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 9

2004P0022

Requirement – Scripts must not implement engineering logic or data management operations.
Each module needs to be delivered in an archive file (zip or tar) that is tagged by the version tag
(Fiber_Module_V_2.1.0, for example). The modules need to have a well-defined
directory structure as described in the following subsections.

4.1 Delivery Directory Structure
Directory names need to be platform-independent, therefore, only alphanumeric characters,
“dash” and “underscore” characters should be used (no spaces). Even though the Windows file
system is not case sensitive, use correct case in all the file name references.

Requirement – In the interest of platform-neutrality, spaces are not allowed in file names.
To assure tractability of multiple versions of a tool, the top delivery directory needs to be tagged
with the release tag. Additionally, a flat file organization structure can become intractable;
therefore, the delivery package needs to be organized in subdirectories. Certain elements of this
structure depend on the operating system version as well as compiler vendor and version. The
AIM-C delivery process uses a two-level OS and platform ID to identify platform-specific
directories as follows:

OS—-versions
compiler_vendor—-compiler_version

Where
OS – name of the operating system as returned by the uname command on Unix-type
systems or indicated in the content of the “OS” environment variable on Windows.
versions – names of the operating system versions as returned by uname -r
command on Unix-type systems or the content of the “OS” environment variable on
Windows. Separate the versions by the underscore character.
compiler – compiler name
compiler_version – compiler version

For example, the files in “Windows--2000_XP” and the subdirectory “Lahey_Fortran--5.60h”
are either binary content generated on Windows 2000 and XP using Lahey Fortran 5.60h or
verification case run using that combination of OS and the Lahey Fortran 5.60h platform. An
illustration of this structure is shown in Figure .

 Detailed description of each directory in the delivery package is as follows:

4.1.1 Directory build
Automated and parametric build scripts are stored here. If creating a single makefile is not
possible due to varying behavior of the make utility on different platforms, a separate directory
should be created or each OS-platform pair. As a preferred alternative, if the process has been
tested for a range of operating systems of the same type (Unix flavors) then a generic build
procedure is delivered through a make file placed in the subdirectory called “Generic”. In this
case, supply a readme.txt file that indicates the list of platforms where the process has been
verified. The build process should start with a wrapper script that takes an argument indicating
where the environment definition resides as indicated in the following example:

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 10

2004P0022

#!/bin/csh -f
setenv ENV_HOME $1
$ENV_HOME/setEnv.csh
make -f Makefile
rm *.o

In turn, the actual make instruction (make file or Ant script, for example) must be parameterized,
and not have any explicit references to compiler names, or use aliases implied in the developer’s
environment. The compiler names should be stored in a setEnv script or batch file that the
build script executes to establish the environment.

4.1.2 Directory data
This is where data supporting the operation of the particular tool is stored. It is preferred not to
tag these file names with version tag or date, since the version is already uniquely defined in the
delivery directory name.

Requirement – For each data module that is used in a binary format, an ASCII dump must be
provided along with a process of bi-directional conversion between ASCII and binary data.
For example, it is not acceptable to provide an Ansys database file. The script that generates the
model and the database must be included. In addition to ASCII files being human readable and
more repairable in case of damage, database and engineering tool vendors do not guarantee
infinite backward compatibility.

Requirement –The ultimate authority and responsibility for storing intrinsic data such as
material properties, their variation, basic processing parameters, etc. is with the AIM-C design
knowledge base.
The files in the data directory may duplicate such data only to provide an interfacing mechanism
between the vendor-supplied module and the design knowledge base. These files may be called
input files, setup files or even databases. The AIM-C integration team will provide assistance in
creating a data model in the design knowledge base and mapping it to the module-specific input
files.

4.1.3 Directory docs
Documentation resides in this directory. It is preferred to separate documentation intended for
different audiences in sub-directories.

Requirement – Each module must have a docs directory.
Documents may have different restrictions on distribution, and a simple mechanism has been
defined to state such constraints. The package needs to include an access filter file named
restrictions.txt at the top level of each folder that contains any restricted data using the
following format:

full_path filter_expression

where "full_path" may refer to a file or a directory and the expression is a C-style logical
expression potentially involving multiple variables that may have values of true or false. If the

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 11

2004P0022

filter_expression evaluates "true", access is granted. There may be multiple lines in this file. For
example if restriction.txt has two lines in a folder

data1.dat Northrop-Grumman && ITAR
detail\data2.dat Boeing && ITAR

then it gives access to data1.dat to users that are ITAR cleared and are members of the Northrop-
Grumman user domain, and opens detail\data2.dat to users that are ITAR cleared and are
members of the Boeing user domain.

4.1.3.1 Directory docs/api
If the tool has an API (Application Program Interface), then the document describing the calling
methods is placed in this directory. The API documentation should be automatically generated
from comments embedded in source code or header files similarly to the javadoc mechanism
for Java.

4.1.3.2 Directory docs/CCB
The initial CCB submission document and the subsequent Change Form are included here.
Since a change will result in an increment in the version tag, set the Change Form document
name to the new version tag.

Requirement – Each delivered software item will have a CCB directory where revision history
is tracked.

4.1.3.3 Directory docs/implementation
Implementation documentation is placed in this directory. Software implementation is
documented by the following devices:

4.1.3.3.1 Inheritance Tree Diagram (C++ and Java)
Class tree diagrams are required with (hand or machine generated) inheritance or interfaces
identified clearly. These diagrams can be generated using any standard modeling package (such
as Booch) or, as a minimum, schematics such as that shown in Figure 4 can be supplied.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 12

2004P0022

Exception

bad_alloc

bad_cast

bad_typeid

logic_error

domain_error

invalid_argument

length_error

Out_of_range

Figure 4 Example of Class Tree Diagram

4.1.3.3.2 Member Variables and Methods (C++ and Java):
Further, a box diagram, Figure 5 identifying member variables (instance as well as static) and
methods for each class is required. Both the class diagram may be generated by a CAE tool such
as Rational Rose. If the number of member variables and methods allows, then the class diagram
may contain these characteristics. For Java, a javadoc documentation is acceptable for
inheritance tree as well as attribute and method documentation.

Requirement – All Java code must have a complete set of javadoc tags.
rdcs_DPL_Set_Container

-m_total_des_pt_num : long
-m_set_list : rdcs_SingleLinkedList
-m_db_file : rdcs_File
-m_db_file_name : rdcs_ChString
-m_project_directory : rdcs_ChString
-m_project_name : rdcs_ChString
-m_design_point_db : rdcs_ChString

+IsA ():rdcs_ChString
+rdcs_DPL_Set_Container (proj_dir : rdcs_ChString,proj_name : rdcs_ChString,des_pt_db : rdcs_ChString,db_name : rdcs_ChString)
-rdcs_DPL_Set_Container ():rdcs_DPL_Set_Container
+Initialize ():void
+~rdcs_DPL_Set_Container ()
+AddSet (set : rdcs_DPL_Set*):rdcs_Boolean
+DeleteSet (set_name : rdcs_ChString):rdcs_Boolean
+ReplaceSet (set_to_replace : rdcs_ChString,new_set : rdcs_DPL_Set*):rdcs_Boolean
+GetSet (name : rdcs_ChString):rdcs_DPL_Set*
+GetSetNames ():rdcs_SingleLinkedList
+ResetSetList ():void
+GetNextSet ():rdcs_DPL_Set*
+IsEndOfSets ():rdcs_Boolean
+Save (file_name : rdcs_ChString =""):rdcs_Boolean
+GetTotalDesPoints ():long
-Read ():rdcs_Boolean
-Write ():rdcs_Boolean

Figure 5 Documentation of member variables and methods

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 13

2004P0022

4.1.3.3.3 Block Diagram
In addition, for each subroutine, a block diagram describing the logic and data flow is required at
a coarse grain level, identifying major logical procedural calculation steps. A detailed flow
diagram at the individual statement level is discouraged.

4.1.3.4 Directory docs/theory
Publications, presentations describing the engineering methodology reside here. The physics
incorporated into the model will be discussed in sufficient depth that the physics-based model
can be understood by a competent scientist or engineer.

The theory description should include uncertainty analysis. Characterize the uncertainty in
variables in the model according to the following definitions:

- Inherent variations associated with physical system or the environment (Aleatory
uncertainty)

Also known as variability, stochastic uncertainty
Manufacturing variations, loading environments

- Uncertainty due to lack of knowledge (Epistemic uncertainty)
Inadequate physics models
Information from expert opinions

- Known Errors (acknowledged)
Round-off errors from machine arithmetic, mesh size errors, convergence errors,
error propagation algorithm

- Mistakes (unacknowledged errors)
Human errors, e.g. error in input/output, blunder in manufacturing

Document the results in the form of a table such as shown in Figure 6.

Think through all the uncertainties in each of the steps contained in the physics-based model:
process, producibility, etc. Identify whether the uncertainties can be treated as independent or
whether there is the possibility of a correlation with another uncertainty. Identify potential for
human error such as the potential for manufacturing defects due to the complexity of the design
or the potential for errors due to the complexity of the analysis.

Characterization and validation of physics-based models may be performed using comparison
with validation data, that is, experimental data or with other physics-based models that have been
characterized and validated. References should be provided to document the experimental data
or other physics-based models, and the relevant data used for comparison should be included in
the documentation. Validation input files and associated output files for the physics-based model
are required. Comparisons should be made between the physics-based model and the validation
data and assessments should be made as to (1) the accuracy of the mean value given the
variabilities previously discussed, (2) the variability of the outputs characterized by higher order
statistics, and (3) the range of values of the input parameters over which the physics-based model
is valid.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 14

2004P0022

Approved for Public Release, Distribution Unlimited - 15 - V_2.0.0, May 7, 2004

Testing machine not calibrated.
Poor specimen finish, poor
alignment in grips.

Use of model outside of bounds (eg
temperature range).

Definition of failure;
particularly for some
loading cases. Initiation
versus propagation of a
crack.

Specimen to specimen
variation; batch to batch
variation. This value is
correlated with strength and
somewhat to modulus

Strain (to failure –
linked to strength)

Testing machine not calibrated.
Poor specimen finish, poor
alignment in grips.

Use of model outside of bounds (eg
temperature range).

Definition of failure;
particularly for some
loading cases. Initiation
versus propagation of a
crack.

Specimen to specimen
variation; batch to batch
variation.

Strength (to
failure)

Modulus

Degree of Cure

For partially cured
materials, the assumption
of cure hardening, linear
elastic response. For cured
materials, the response
under mixed mode loading.

Vailidity of the form of the
equation; including
physical basis: empirical,
semi-empirical ...

Uncertainty due to lack of
knowledge
(Epistemic
uncertainty)

inadequate
physics models
information from
expert opinions.

Use of model outside of bounds (eg
strain range). Approximation of
straight line fit to curve.

Use of model outside of bounds (eg
temperature range, rates). In
general modules should be self-
checking. Are all input parameters
within predefined bounds?

Known Errors (acknowledged)
e.g. round-off errors from
machine arithmetic, mesh
size errors, convergence
errors, error propagation
algorithm

Testing machine not calibrated.
Poor specimen preparation; poor
strain measurement techniques.

Specimen to specimen
variation; batch to batch
variation.

DSC not calibrated; base-line
choice
(Need to track history of usage –
at all levels. Over time this will
reduce uncertainty due to this)

batch to batch variation in
rate of reaction.

Mistakes (unacknowledged
errors)

human errors e.g error
in input/output, blunder
in manufacturing

Inherent variations
associated with physical
system or the environment
(Aleatory uncertainty)

Also known as
variability,
stochastic
uncertainty

E.G. manufacturing
variations, loading
environments

Figure 6 Example of Categorization of Uncertainty for Physics-Based Model

2004P0022

4.1.3.5 Directory docs/user
If the tool can be run by a user, the users’ instructions go here. Each module should be delivered
with a user manual describing the inputs, outputs, and intended usage of the module. Further, the
range of values for input parameters over which the module is expected to operate must be
documented. While it is understood that extensive exercise for the validity of results for
arbitrary valid combination of variables is part of the validation effort, the documentation should
provide this range information for each parametric input variable.

4.1.4 Directory env
Environment definition goes here. Full path to the compilers and other required resources are
defined in directories named after the platform ID. An example of the environment definition
script is given below:

setenv CC /apps/wsv6_2/bin/f95
setenv F95 /apps/wsv6_2/bin/f95
setenv INSTALL /usr/ucb/install

4.1.5 Directory Excel
Excel spreadsheets are stored here. Spreadsheets are valuable tools, but it takes some discipline
to make them useful in the long run. There are several potentially severe problems with
spreadsheets:

- Until Office 2004 is released, there is a chance of data corruption when an interactive
user is using Excel while a batch execution of another spreadsheet is spawned by the
queuing system. The root of this problem is sharing objects inherent in current Office
products. A single copy of each of these shared objects resides in memory, and it is not
aware of which client application is using it. This becomes an issue when a spreadsheet
is utilized as a design tool in an automatic design exploration process such as those
executed by RDCS.

- Due to some complex interaction between Microsoft DCOM and some queuing and load
balancing systems (LSF, a commercial solution by Platform Computing, in particular),
the user running the design exploration must have administrator privileges. This is
usually not accepted by Information Technology (IT) organizations.

- Spreadsheets are saved as binary files. While Word documents are purely presentation
elements, spreadsheets normally implement some business logic. In order to be able to
discern the differences between versions, a text-based storage of the logic implementation
is required. Furthermore, data should not be buried in binary spreadsheet files, either,
since that would violate the requirement stated in Section 4.1.2. Treat a spreadsheet as
the input and presentation software platform it is. Separate data, business logic and
presentation, and enter these components in the repository separately.

- If a link to a spreadsheet is placed on the AIM-C web application, version control of the
spreadsheet tool is lost. The user can download, save, and use the spreadsheet without
being aware that the local copy might have been superseded.

Approved for Public Release, Distribution Unlimited - 16 - V_2.0.0, May 7, 2004

2004P0022

Requirement – Since comparison of different versions of a spreadsheet is impossible, provide a
detailed and accurate description of the changes when a spreadsheet is entered in the
repository. This provides a manual history of changes to the tool.

Requirement - Spreadsheets must not be used in automated design explorations.

Recommendation – Business logic should be implemented either in FORTRAN or C program
compiled into a DLL.

Commit the source code in the repository. In fact, use the spreadsheet only as a presentation and
user input device, and keep the logic external, Figure 7. The externally implemented logic can
easily be reused in automated design explorations.

View Model Controller

Spreadsheet Data Objects Computations

Figure 7 Model-View-Controller Architecture for Excel Spreadsheets

Recommendations – Store the input data required by the spreadsheet in .csv (Comma Separated
Values) format, and provide Visual Basic functions to import the data. Commit the .csv files and
the import functions to the repository.

The biggest challenge is automatic verification of spreadsheet tools where a set of parametric
inputs is provided, the spreadsheet is run, and parametric output is generated without
interactively entering data in cells and initiating the calculations. One solution for this is
xlRunner, the Visual Basic program available in the WebEE framework. The application is
run in a command line as follows:

xlRunner spreadsheet.xls mapping.xml parametric_input parametric_output error_output

where
spreadsheet - name of the spreadsheet file
mapping.xml - name if the XML file containing input and output mappings
parametric_input - name of the input file in name=value format
parametric_output - name of the output file in name=value format
error_output - name of the error file

A sample variable-cell mapping file is provided in Listing 2.

<?xml version="1.0" encoding="UTF-8" ?>

<xlr:xl-runner xmlns:xlr=http://www.boeing.rdyne.com/xlRunner
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="/xlRunner.xsd">

<description>
 Run Hatband Sizing Spreadsheet program. This file is reformatted
 to use the newest xlRunner formats. 3/11/2004. Only change from
 11/19/2003 version is that the optional "calc-to-manual" element
 was not shown in that version. - by Ray Clough.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 17

http://www.boeing.rdyne.com/xlRunner
http://www.w3.org/2001/XMLSchema-instance

2004P0022

</description>

<init>

 <xl-debug-mode>false</xl-debug-mode>

 <!--
 Set Excel Calculation mode to Manual. Optional: Default=true.
 The existing value will be reset at end of program.
 -->
 <calc-to-manual>false</calc-to-manual>
 <xl-save-on-exit>true</xl-save-on-exit>
 <result-file-overwrite>true</result-file-overwrite>
</init>
<blocks>
 <block cardinality="1">
 <!-- this data is written directly to the spreadsheet -->
 <inputs-to-wks>
 <input wks="Data_Input" range="B3" id="Jacket_Gage" type="Single" />
 <input wks="Data_Input" range="H3" id="FSU_mixed" type="Single" />
 <input wks="Data_Input" range="I3" id="FSY_mixed" type="Single" />
 </inputs-to-wks>

 <!—- The executable functions within the Excel Workbook -->
 <exec-fcns>
 <fcn name="exe_size_hatband_Click" location="Sheet5"/>
 </exec-fcns>

 <!-- this data is read from spreadsheet & written to the results file -->
 <result-from-wks>
 <output wks="HB_Sizing" range="L7" output-id="Wght" type="Single" />
 <output wks="HB_Sizing" range="M7" output-id="a2" type="Single" />
 </result-from-wks>
 </block>
</blocks>

</xlr:xl-runner>

Listing 2 XML input to xlRunner

In this example, input variables are passed into cells of a sheet named “Data_Input”, the VB
function “exe_size_hatband_Click” is executed and output values are retrieved
from cells in sheet named “HB_Sizing”. This mechanism for the current release of MS Office
(Office 2002) is only recommended to record the QA (Quality Assurance) cases, and not for
integration in an automated design process. Potential data corruption and queue permission
problems may arise if xlRunner is used as an RDCS Math model element.

4.1.6 Directory exe
Executables compiled on all platforms available to the developer are stored here in directories
named after the platform ID. Considering varying interpretations of language standards, it is
important to verify each tool on multiple platforms to ensure portability. Executables for each
OS-platform pair are stored in an appropriately named two-level directory substructure, as
described at the beginning of Section 4.1.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 18

2004P0022

4.1.7 Directory lib
Load libraries and .dll files compiled on all platforms available to the developer are stored
here in directories named after the platform identification. Considering varying interpretations
of language standards, it is important to verify each tool on multiple platforms to ensure
portability. Libraries for each OS-platform pair are stored in an appropriately named two-level
directory substructure, as described at the beginning of Section 4.1.

4.1.8 Directory QA
The QA directory houses a set of test cases that is designed to verify that the module is
functioning in accordance to the requirements. These test cases can be used to verify that the
module is properly built for a new platform. As always, it is preferable that developers supply a
complete test suite that exercises normal operation as well as error handling. Each QA case needs
to be stored in a separate subdirectory of the main QA branch. Notice that the QA cases are not
meant to be validation cases whose focus is validating the physical model, they simply check if
the module works as delivered.

Requirement - Each module must have at least one QA case.

4.1.8.1 Directory QA\OS\platform\case_name\input
Notice that for modules that are not platform neutral (Compiled codes), it is required that a QA
directory structure is provided for each verified OS-platform pair as defined in Section 4.1. All
input files and a description of the case in a readme.txt file are provided here. Since there is
a chance that a module requires a platform independent input such as a binary file, the input
directory needs to be created for each platform to facilitate automated module verification.

4.1.8.2 Directory QA\OS\platform\case_name\output
The relevant output files used to verify the tool upon deployment are stored here.

4.1.8.3 Directory QA\OS\platform\case_name\work
A snapshot of the actual run is given here. There may be scratch files that are not necessary for
verification, but they may be useful for debugging problems.

4.1.9 Directory src
Source files are given here. For tools that utilize multiple languages, separate source files into
different directories named after the languages. Each source file must start with a documentation
header according to the format shown in Listing 3. Naturally, comment characters appropriate to
the language need to be used.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 19

2004P0022

// **
// Purpose: *
// Developed By: *
// Released On: *
// Modified By: *
// Date: *
// Reason: *
// **

Listing 3 Documentation heading in the source code

Requirement – All source codes for compiled and scripting languages will have a
documentation heading.

4.1.10 Directory Validation
Validation data may change as the tools mature. If validation data is provided, keep it within the
delivery package. There is no set format for validation data at this point. Keep the different
cases in separate folders and provide tabular comparison as well as textual description. The CVS
versioning system (Section 6) will not create duplicates of unchanging data, therefore there is no
increasing storage needs when the same files are brought from one version to another.

An example of the directory structure in a tool delivery package for a compiled Fortran tool is
shown in Figure 8.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 20

2004P0022

Figure 8 Tool delivery package directory structure

5 Template Delivery Process
5.1 Creating RDCS Batch File

An RDCS project is a set of directories and binary files. In order to archive a project in a way
that is amenable to configuration control and version comparison, it is necessary to crate an
ASCII RDCS batch file. The project can be re-created from the batch file, and the batch file
provides a clear and readable map of the entire project. An RDCS project is converted to a batch
file as follows

<RDCS> export path project_name RDCS_batch_file_name

where

<RDCS> - The alias or script used to invoke RDCS
path - The project path. Must be followed by “/”
project_name - The project name (not including the .rdcs extension)
batch_file_name - The name of the RDCS batch file. The recommended extension is

“.rbat”
The RDCS projects are further enhanced by parameterizing relevant information such as version
of the system, working directories and design process parameters passed from either the Design

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 21

2004P0022

Knowledge Database or from the AIM-C system GUI. An example of such an RDCS project
template is shown in Listing 4 and Listing 5.

 BEGIN_CONTINUOUS_VARIABLE
 NAME: part_thickness
 DESCRIPTION:
 BEGIN_DOMAIN_DESCRIPTION
 PHYSICAL_BOUNDS: -8.98847e+307 8.98847e+307
 END_DOMAIN_DESCRIPTION
 BEGIN_DETERMINISTIC_DESCRIPTION
 SPEC_NAME: unknown_source
 SPEC_DESCRIPTION: none available
 MIN_NOMINAL_MAX: $part_thickness_min 0.39 $part_thickness_max
 END_DETERMINISTIC_DESCRIPTION
 END_CONTINUOUS_VARIABLE

Listing 4. Templatized Design Process parameters

 BEGIN_FUNCTIONAL_MODEL
 MODEL_ID: rdcs_to_any
 RDCS_INPUT_FILE: rdcs_input

 BEGIN_SERVICE
 SERVICE: Generic:1-job-per-machine
 EXECUTABLE_NAME: $appHome'AIM-
ComputationalLink/codes/java/rdcs2any_script2.csh
 COMMAND_LINE_ARGUMENTS: $appHome
 INPUT_FILE: YES
 END_SERVICE

 BEGIN_INPUT_VARIABLES
 RDCS_NAME: part_thickness
 RDCS_NAME: pressure
 RDCS_NAME: first_hold_time
 RDCS_NAME: second_ramp_rate
 RDCS_NAME: HeatTransferCoeff
 RDCS_NAME: ToolThermalConduct
 END_INPUT_VARIABLES

 BEGIN_INPUT_FILES
 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/tmp_IM7-8552.DAT'
 LOCAL_NAME: tmp_IM7-8552.DAT
 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/template_file'
 LOCAL_NAME: template_file
 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/tmp_ProcessModuleStart.txt'
 LOCAL_NAME: tmp_ProcessModuleStart.txt
 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/tmp_Demo2_Process_Module.BCI'
 LOCAL_NAME: tmp_Dec3Demo2_Process_Module.BCI
 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/tmp_Demo2_Process_Module.CYC'
 LOCAL_NAME: tmp_Dec3Demo2_Process_Module.CYC

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 22

2004P0022

 GLOBAL_NAME: $appHome'AIM-
ComputationalLink/demo2/data/'$Resin_Type'/tmp_Invar36.dat'
 LOCAL_NAME: tmp_Invar36.dat
 END_INPUT_FILES
 END_FUNCTIONAL_MODEL

Listing 5 Templatized file locations

In Listing 4, the lower and upper limits, $part_thickness_min and
$part_thickness_max are template parameters, and they are passed from the AIM-C
system user interface. The system template service looks up the appropriate numerical values,
and substitutes them into an RDCS batch file that is passed to the RDCS system to generate an
instance of the RDCS project. In Listing 5, the location of the data files as well as a part of the
path are parametric. The $appHome system variable is constructed by the AIM-C system from
its URL which carries the version tag; therefore, it points to the application home for the version
of AIM-C being used. By referencing $appHome in the path, it is assured that the appropriate
data files are retrieved. Notice that $appHome is also passed to the script executing the
functional so that it can call the appropriate environment definition, setEnv.csh (see Section
0) . The other template variable in this example is $Resin_Type. This variable is passed from
the GUI, and it is used to reference data files specific to a resin type. The process of building the
templatized RDCS batch consists of the following three steps:

- Use the RDCS GUI to build and debug a new project
- Export the project into a batch file
- Replace all references to full path names with AIM-C system parameters or variables
that are specific to a tool.

5.2 Configuration Control of Tools in Functional Models
When the design template is delivered, all the reusable modules (fiber, resin, etc.) must be in
configuration control, therefore the executables will carry the appropriate version tag. Other
components developed specifically for the template will be delivered in whole with the template
in a separate directory of their own. For tools that are not under configuration control of their
own, a release package should be created within the directory structure of the template.

In order to assure easy porting of templates between different environments, all configuration
settings must be centralized. In other words, no references to users home directories, paths to
tools or other environment settings should be in any of the scripts or tools in AIM-C.

5.3 Quality Assurance - Verification of the Math Model Outside of
RDCS

This delivery item ensures that the design template is verifiable without running it in RDCS.
The main purpose is facilitating deployment of the template in an environment other than the
template developers’ operating environment. An additional benefit is that all the functionality of
the template is recorded, facilitating stating the template as a single script or transferring it to an
alternate design framework. The process is as follows:

- Create a directory for each functional model.
- Create a work directory where the functional model will run.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 23

2004P0022

- If the functional model has parametric input, create a directory called
“parametric_input”, and place a copy of the parametric input file there.

- If the functional model has independent input, create a directory called “input”, and
place a copy of all the independent input files there. Alternatively, provide a script that
stages the independent files from a known location stated as a relative path.

An example for the QA directory structure is shown in Figure 9.

Figure 9 Directory Structure for Math Model Verification.

Finally, write a file called “run.template” in the directory for each functional model. This
file serves as a template for running the functional model stand-alone by copying lines from it as
illustrated by the following example for the “prepreg” functional model:

Copy independent input file

cp /apps/AIM-C/V_0.0.4/AIM-ComputationalLink/demo4/data/PrepregPropertiesList.txt .

Copy files from link between functional models

cp ../../rdcs_to_any/work/Prepreg-IM7_977-3_Ver-Nov7-2001_User_Input.txt .
cp ../../rdcs_to_any/work/Prepreg-IM7_977-3_Ver-Nov7-2001.txt .

cp ../../fiber/work/FIBMOD_SETUP.out .

cp ../../resin/work/Resin_977_Ver-25Nov-2001.out .

Execute functional model

/apps/AIM-C/V_0.0.4/AIM-ComputationalLink/codes/Prepreg_module5/Prepreg

5.4 Directory Structure
If a template has a utility application whose applicability is restricted to the template, then a
complete module delivery directory structure needs to be created within the template directory.
It is often possible to abstract the utility and generalize its applicability. In this case, it may be
delivered either as a Module or as a Utility.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 24

2004P0022

5.4.1 Directory docs
Templates may have access restrictions that can be handled through the restrictions.txt file
described in Section 4.1.3. For templates, the docs directory has some of the elements defined
for Modules in Section 4.1.3, specifically the CCB, theory and validation directories.
Since math models are aggregates of multiple physics modules, an assessment of their ability to
predict variability needs to be performed and documented in the theory directory. If the
template has utilities with exclusive relevance to it, the API or user directories need to reside
in the directory created for the utility within the template directory.

Requirement – Each template shall have a CCB and a theory documentation directory.

5.4.2 Directory QA-Math_Model
Results of the Math Model verification as described in Section 5.3.

5.4.3 Directory QA-Design_Process
When running design processes in an RDCS project, output files are generated in the Output
directory within the RDCS project directory. Provide copies of these files here so that correct
operation of the design processes can be verified.

5.4.4 Directory rdcs
The RDCS batch file generated from the RDCS project resides here. Although there is no
requirement for file extension on the RDCS batch file, use of .rbat extension is recommended.

Additionally, each tool that is used only in a particular template needs to have its own delivery
directory structure that conforms to the module delivery requirements specified in Section 4. The
number of such tools should be kept minimal. Instead, consider generalizing the tool and placing
it in the global Utilities repository.

6 The Configuration Control Process
6.1 CVS – Concurrent Versioning System Overview

Client/server based CVS enables developers scattered by geography or slow modems to
function as a single team. The version history is stored on a single central server and the client
machines have a copy of all the files that the developers are working on. Therefore, the network
between the client and the server must be up to perform CVS operations (such as check-ins or
updates) but need not be up to edit or manipulate the current versions of the files. Clients can
perform all the same operations that are available locally.

CVS' basic version control functionality maintains a history of all changes made to each
directory tree it manages, operating on entire directory trees, not just single files.

CVS supports branches allowing several lines of development to occur in parallel and
providing mechanisms for merging branches back together when desired.

CVS can tag the state of the directory tree at a given point, recreate that state and display
the differences between tags or revisions in the standard diff formats.

CVS has Unreserved Checkouts allowing more than one developer to work on the same
files at the same time. Using CVS in this mode is not recommended in AIM-C.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 25

2004P0022

CVS provides a flexible modules database that provides a symbolic mapping of names to
components of a larger software distribution. It applies names to collections of directories and
files. A single command can manipulate the entire collection.

CVS provides reliable repository access to remote hosts using Internet protocols,
facilitating collaboration with distant employees and contractors.

All CVS operations can be performed over the network. A developer on a remote host
can check out a local copy of the sources, make changes, update her local copy with changes
made by others and commit her changes back into the repository.

Remote operation is efficient, transmitting only those files that have changed. When
appropriate, CVS transmits patches to files and verifies the results rather than sending entire
files. CVS can compress the text it transmits.

Remote operation is reliable. CVS holds no internal locks while waiting for
communications to complete so network troubles will not disrupt others' access to the repository.
It uses reliable transport mechanisms, not NFS, making it well adapted for use over wide-area
networks.

Remote operation is authenticated. CVS can use the industry standard Kerberos protocols
to verify the identity of the remote user. Kerberos is much more secure than the source-address
authentication provided by the ordinary rlogin and rsh protocols. CVS can also work with ssh, a
secure replacement for rsh, or use straight password authentication.

Remote operation supports portable computers. While a developer's portable computer is
connected to the network, she can update her working copy of the source code. While
disconnected, she can develop her working copy. The next time she connects to the network, she
can commit her changes.

More information is available at http://www.cvshome.org.

6.2 Tagging the Repository
It is recommended that at the end of each workday all files are entered in the repository. Since
released versions are specifically tagged with the version tag, there is no danger of other
developers inadvertently accessing an unreleased resource. Developers should use only released
versions of files for which they are not directly responsible.

Since CVS does not allow the “dot” character in version tags, the versions tag used in CVS uses
“underscore” characters to represent the AIM-C version tag. In the snapshot shown in Figure 10,
the DeployDevelopment.bat file is shown to have gone through 4 revisions. Version 1.3 was an
intermediate configuration not worth tagging, but 1.4 is part of both V_0.13.0 and V_0.14.0
releases.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 26

http://www.cvshome.org/

2004P0022

Figure 10 Application of the Version Tag in CVS

While CVS has many features and development practices to perform multi-branch development,
the following actions seem adequate to for simple version control:

Import – The initial act of entering a module in the repository
Commit – Uploading of files in the repository (preferably daily)
Update – Downloading files from the repository (preferably daily)
Tag – Attach a version tag to a consistent set of files that comprise a release. It requires
consensus among the configuration control board members. It is not to be confused with
the version number automatically assigned to the daily commits.
Checkout – Creating a new image of a tagged version to support delivery of the product.

7 The Change Control Process
The AIM-C modules, templates, and system software have reached a maturity level and volume
where configuration, versioning, and change control are required to maintain schedule, assess
and control ripple effects due to changes in components of methodology or their software
implementation. The basic approach to the Change Control Process in Reference [2] has been
adopted and modified to suit engineering methodology and software. The goal is to institute a
simple to follow processes that does not put undue burden on methodology and tool developers,
but one that is effective at allocating the right resources to the right work package.

A Configuration Control Board (CCB) with representatives of each engineering discipline and
the integration team has been established to serve as forum where change proposals are analyzed
and a course of action is agreed. The CCB has several objectives:

• Establish a baseline methodology and software implementation.
• Triage changes to optimize resources and schedule. Only changes supported by

consensus will be implemented.
• Allow all parties that would be affected by changes to assess the impact of proposed

changes.
• Document and record a change history for each module, template or other element of the

methodology.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 27

2004P0022

The configuration control board has to decide each proposed change by considering the classic
trade-off triangle: schedule, cost, and features with the added dimensions of engineering
accuracy, and long-term architectural viability. A scorecard will be developed to quantify and
document the multidimensional decision process the CCB practices.

The steps of development followed on a work article under change controls are as follows:

• Submit change request
• Implement the change
• Go through the Software Release Process of appropriate length to assure quality
• Submit the completed work article to the CCB
• Execute the steps of the Detailed Change Control Workflow (Section 7.2.1.1) to release

the new version of the package

The initial steps undertaken by the CCB are focused on entering all tools (modules and
templates) in version control by modifying and extending the configuration control processes
practiced by the integration team to general work articles.

7.1 The Change Request
Before a change on the Phase I AIM-C product is worked, a simple Change Request document is
submitted. The document lists the following items:

Overview – Description of the changes
Benefits - How is the change benefiting AIM-C
Impact – Assessment of other modules impacted
Approach – How is the change to be implemented
Resource needs – Schedule, budget, etc.
Public Interface – How is the interface to the module changed
Impact Statement – What are the templates and modules known to be impacted by the
change.

Upon submission, the CCB is expected to review and dispose the request within one session,
unless assessment of impact requires more time.

7.2 The Software Release Process (SRP)
After the Change Request is approved, development starts on the work article. Before a unit of
methodology implemented as a software package is submitted to the CCB, it needs to go through
its own internal release process. Three stages of the release process are “mad rush”, “code slush”
and “code freeze”, as depicted in Figure 11. Committing changes in the repository is slowed
down at each stage, effectively instituting a configuration control step whose scope is limited to
the particular package. The length of each phase depends on the complexity of the delivery item.
Modules may take a short time (4-6 days) to complete the SRP, while larger units such as the
AIM-C system itself will take about 6 weeks.

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 28

2004P0022

• All commits to the
repository must be
approved by the
CCB

• Allowed Changes:
• Bug fixes.
• Documentation

updates.
• Security-related fixes of

any kind.
• Any additional change

that the release
engineering team feels
is justified, given the
potential risk.

“code slush” “code slush” “code freeze” “code freeze” “mad rush” “mad rush”
• Initiated by e - mail

indicating beginning
of release process

• Commit changes to
repository at
developers discretion

• Verify engineering
analysis tools,
libraries, and 3 rd
party tools are
released

• Release candidates
(RC) are deployed in
the production
environment

• All commits to the
repository must be
approved by the CCB

• Allowed Changes:
• Critical bug/security fixes

• Documentation updates
• Follow Final release

checklist

Figure 11 Software Release Process

7.2.1.1 Detailed Change Control Workflow
Once a package passes through its own release process, it is submitted to the CCB. The

1 - Developers create an initial CCB submission package of a module or template.
2 - Formal requirements are iterated/reviewed, and the package is accepted
3 - Version V_1.0.0 is assigned to the package
4 - A member of the CCB or a representative of the developer(s) commits the package in CVS
repository. Access permissions need to be set up for each CCB item in the repository to
read/write by CCB members and members of the package developer team. The basic idea is that
the developer team uses the same repository as CCB, but a version tag is only assigned with
CCB approval.

4.1 - Import package from working directory to the repository
4.2 - Temporarily save a copy of package in the working directory
4.3 - Checkout module from the repository to the working directory. This step results in
a version controlled package in the working directory. Note: when multiple developers
collaborate, there will be multiple working directories. However, only content committed
in the repository is relevant for the AIM-C project, therefore the process of committing
and updating work regularly needs to be routine.

5 - The repository is tagged with the current version tag.
6 - If needed, package developers continue to work on the capabilities/features. They commit
their changes daily as long as the package has not entered formal release process leading up to
CCB submission. If the package is in release process, then commits are governed by the release
process rules.
7 - At the end of the release process the package is submitted to CCB
8 - Upon approval, a new version tag is assigned by the CCB, a deploy script is generated and
committed to the repository. The CSV repository is tagged with the new version tag.
9 - Using the deployment script, the current package is deployed from the work area to the
Release area for general use. Make sure that the new version of the tool is deployed into a

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 29

2004P0022

Approved for Public Release, Distribution Unlimited V_2.0.0, May 7, 2004 30

separate directory named after the version tag. Some templates may keep using older versions of
modules until the templates are updated.
10 - Release area permissions for the released package are set to read only
11 - The deployment script is removed from the work area and the repository to discourage re-
release of the same version of the package. For emergencies, the deployment script is still
available in the "attic" of the repository.
12 - GOTO 6

A snapshot of one of the files in the CVS repository for the Fiber Module is shown in Figure 12.
The graph shows internally assigned version numbers 1.1 and 1.1.1.1, which are used by CVS to
track daily commits in the repository. The tag V_1_0_0 is of relevance, since this version tag
assigned by the Change Control Board is the handle used to retrieve a consistent set of files
associated with V_1.0.0. Different files are likely to have been committed a different number of
times, thereby having different internally assigned version numbers. The version tag associates a
consistent set of files that was most current at the time of tagging the repository.

Figure 12 Versions in CVS Repository

References:
[1] G. Havskjold: Robust Design Computational System AFRL-ML-WP-TR-2000-4093 (2000)

[2] S. McConnell: Rapid Development; Microsoft Press (1996)

	Foreword
	1. Scope of Requirements
	Version Tag
	3 Centralizing Environment Settings
	Module Delivery Process
	Delivery Directory Structure
	Directory build
	Directory data
	Directory docs
	Directory docs/api
	Directory docs/CCB
	Directory docs/implementation
	Inheritance Tree Diagram (C++ and Java)
	4.1.3.3.2 Member Variables and Methods (C++ and Java):
	4.1.3.3.3 Block Diagram

	Directory docs/theory
	Directory docs/user
	Directory env
	Directory Excel
	Directory exe
	Directory lib
	Directory QA
	Directory QA\OS\platform\case_name\input
	Directory QA\OS\platform\case_name\output
	Directory QA\OS\platform\case_name\work
	Directory src
	Directory Validation

	5 Template Delivery Process
	5.1 Creating RDCS Batch File
	Configuration Control of Tools in Functional Models
	Quality Assurance - Verification of the Math Model Outside of RDCS
	5.4 Directory Structure
	Directory docs
	Directory QA-Math_Model
	Directory QA-Design_Process
	Directory rdcs

	The Configuration Control Process
	CVS – Concurrent Versioning System Overview
	Tagging the Repository

	The Change Control Process
	The Change Request
	The Software Release Process (SRP)
	
	Detailed Change Control Workflow

